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Abstract  

The primary data on pronunciation variation — e.g., dialect atlas data — is often recorded 

incommensurably, i.e. in different ways in different atlases, and even in different ways within the same 

atlas when teams of fieldworkers and transcribers are involved. In particular these data collections differ 

in the detail in which pronunciations are recorded, using between 40 and 100 different basic symbols. 

This study shows that transcription system detail (understood in this sense) increases the linguistic 

distance measured and therefore must be regarded as a source of bias in assessing pronunciation 

differences and comparing them across languages. A method is therefore introduced to reduce 

transcription system complexity, even while retaining faithful assessments of aggregate pronunciation 

differences. The technique introduced is relevant when comparing within sets that have been transcribed 

very differently and also when comparing different dialectological datasets, e.g. with respect to the 

dependence of linguistic difference on geography. 
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LA MEDIDA DE LA CONMENSURABILIDAD EN LA VARIACIÓN L INGÜÍSTICA  

Resumen 

Los datos primarios sobre la variación en la pronunciación —por ejemplo, los datos de un atlas 

dialectal— se registran a menudo de manera inconmensurable; es decir, de diferentes maneras en atlas 

distintos, e incluso de distintos modos en un mismo atlas cuando hay implicados diferentes equipos de 
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investigadores de campo y de transcriptores. En particular, estas colecciones de datos difieren en la 

manera como se registraron las pronunciaciones, llegando a utilizar entre 40 y 100 símbolos básicos 

diferentes. Este estudio muestra que los detalles del sistema de transcripción (entendido en este sentido) 

aumentan la distancia lingüística y por lo tanto han de considerase una fuente de sesgo no sólo en la 

evaluación de las diferencias en la pronunciación sino en la comparación entre las lenguas. Se ha 

diseñado un método para reducir la complejidad del sistema de transcripción, aunque se mantienen las 

evaluaciones correctas del conjunto de diferencias en la pronunciación. La técnica introducida es 

relevante si se comparan conjuntos que se han transcrito de manera muy diferente y también cuando se 

comparan diferentes conjuntos de datos dialectales, por ejemplo, con relación a la dependencia de la 

diferencia lingüística en geografía. 

 

Palabras clave 

Punto de información mutua, distancia lingüística vs distancia geográfica, sistema de transcripción de la 

reducción, curva de sublineal; normalización de las diferencias del transcriptor 

 

 

1. Introduction and Motivation 

 

This paper proposes a technique to remove one source of distortion that may 

confound the comparison of phonetic transcriptions, namely the use of different 

numbers of phonetic symbols. We first motivate the work by looking at dialectological 

theory and by demonstrating that the problem genuinely occurs in examining dialect 

atlases of different language areas. In the same section we introduce a second potential 

application for our technique, by noting a single atlas in which different fieldworkers 

used varying numbers of phonetic symbols. Second, we suggest a means of identifying 

pairs of symbols that are then merged. By applying the technique iteratively we reduce 

the size of the phonetic inventory. Third, we examine the result of applying this 

procedure to several datasets, verifying that the resulting dialectometrical analyses 

correlate well with the measures using the original phonetic inventory. Fourth, and 

finally, we examine in the conclusions and discussion section one apparent alternative 

and also discuss potential further confounds.  

This paper is a contribution to a special issue on perception, production and 

attitudes concerning language variation, and its specific contribution to this topic is a 

means of comparing perceptions of variation (transcripts) even when they have been 

compiled on the basis of different segmental inventories (transcription alphabets). 
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Our primary motivation for attempting to remove a confound due to phonetic 

inventory size is theoretical, namely the ambition to examine the influence of geography 

on linguistic variation in different language areas, and in fact to quantify that influence 

in commensurable fashion. In this point, we should like to go beyond the consensus 

view that geography influences linguistic variation to a measurement of the strength of 

that relation and to models of the form it takes. Trudgill (1974) suggested one such 

form, namely a “gravity model” in which the tendency of varieties to share features 

decreases as an inverse square of their distance to one another and increases as a 

product of the population size speaking them. Several subsequent qualitative studies 

provide indications that the population size parameter of the model was sensible, and 

many others argued that further parameters were needed. Nerbonne and Heeringa 

(2007) review the literature on the gravity hypothesis in linguistics, and go on to 

develop a quantitative assessment of the gravity model, showing a sublinear curve 

mapping geographical distance to aggregate pronunciation distance in the Dutch Low 

Saxon dialect area, and incidentally finding little effect of population size. They note as 

well that Séguy (1971), in the first paper using dialectometrical techniques, examined 

the relation between lexical distance and geography, and likewise observed a sublinear 

relation. Nerbonne (2010) demonstrates that the sublinear curve of aggregate 

pronunciation distance is found not only for Dutch, but also for German, Norwegian, 

(Gabon) Bantu, Bulgarian, and American English (see Figure 1). This line of work 

suggests that linguistic variation is linked in a law-like fashion to geography, but we 

will need commensurable measures of linguistic distance if the model is to be 

formulated and tested more exactly.  
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Figure 1. Aggregate pronunciation distance increases as a sublinear function of geography (taken from 

Nerbonne, 2010). The x-axes show the geographic distance in kilometers “as the crow flies” and the y-

axes show non-comparable linguistic distance on the basis of pronunciation data. In each case the 

logarithmic curve was drawn. The y-axes in the different graphs are incommensurable because they come 

from different procedures, but, as the text argues, also because they are based on differently sized 

transcription systems. Note that the Norwegian scatter plot is based on 15 varieties and not on the 55 

varieties used in this paper.  
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This paper aims to provide one prerequisite for a more exact formulation of the 

reliance of linguistic variation on geography. We would like to predict not only the 

general abstract form of the relation, but also its more specific parameters. Nerbonne 

(2010) conjectures that the dependence is logarithmic in the aggregate because the 

dynamic of diffusion is linear in its effect on individual linguistic features. But the 

logarithmic function that might describe this relation, ling(x) = m log(geo(x)) + b has 

two parameters, m, the slope of the logarithmic curve, and b, the y-intercept. While b is 

presumably the degree of sub-dialectal variation, the slope m is a separate population 

parameter about which we would like to develop more exact hypotheses. Different 

populations may differ in the degree to which linguistic variation depends on 

geography, depending on the population density, the mobility of the population, the 

strictness of its social stratification, the length of time for which language 

standardizations of some sort exist, the length of time since the population became 

demographically (or politically) stable, or perhaps on other factors. To move beyond 

speculation about these factors, we need commensurable measurements across data sets 

from different languages. 

Another motivation to improve commensurability in phonetic transcription is the 

problem of “field worker isoglosses” (Trudgill 1982:241ff), the situation in which the 

analysis of a data collection reveals systematic differences which appear due to the field 

workers’ preferences — or, worse, their errors. While many such cases are irreparable, 

perhaps even undetectable, one common sort of problem may be addressed, namely one 

in which phonetic transcription systems differ in the size of the phonetic inventory, or, 

put differently, the number of distinctions they express. In fact, the large-scale Goeman-

Taeldeman-van-Reenen-Project (Goeman and Taeldeman 1996) suffered precisely from 

this problem, as the dialectal pronunciations in the Netherlands were transcribed in 

more detail (using 82 sound segments) than the pronunciations in Flanders (using a 

subset of only 56 segments) and were therefore analyzed separately (Wieling et al. 

2007). By applying the reduction method to this dataset, a single analysis of all data is 

possible. 

In the following, we show that the measure of linguistic distance depends on the 

size of the segment inventory with which the pronunciation data is transcribed. Some 

data sets distinguish one hundred phonetic segments, others only forty. Given the 

©Universitat de Barcelona



M. Wieling & J. Nerbonne 
 
 
 

 146 

demonstration that the size of the segment inventory can be influential, the main 

contribution of the paper is the development of a technique to reduce phonetic inventory 

size in a way that results in measures that still correlate highly with the original 

measures. We then report on the success of this technique, which we believe allows us 

to compare pronunciation distances between different languages validly.  

 

 

2. Material 

 

To illustrate the effectiveness of our reduction method with respect to 

investigating the influence of geography on linguistic variation language, we largely use 

the same linguistic material as used and discussed by Nerbonne (2010). The Bantu data 

set consists of phonetic transcriptions of 160 words in 53 locations which were collected 

in Gabon by researchers from the Dynamique du Langue lab (http://www.ddl.ish-

lyon.cnrs.fr). The data set is described in detail and analyzed by Alewijnse et al. (2007). 

The Bulgarian data set contains phonetic transcriptions of 156 words in 197 locations 

and is part of the project Buldialect — measuring linguistic unity and diversity in 

Europe (http://www.sfs.uni-tuebingen.de/dialectometry). Houtzagers et al. (2010) offer 

a detailed overview and analysis of the data set. The German data set contains phonetic 

transcriptions of 186 words in 201 locations from the Kleiner Deutscher Lautatlas — 

Phonetik (http://www.uni-marburg.de/fb09/dsa). The data set is analyzed and discussed 

in detail by Nerbonne and Siedle (2005). The Dutch data set contains phonetic 

transcriptions of 562 words in 424 locations in the Netherlands. Wieling et al. (2007) 

selected the words from the Goeman-Taeldeman-Van Reenen-Project and also give a 

detailed overview and analysis of the data set. Our Norwegian data set differs from 

Nerbonne (2010) since we use all 55 locations as described by Heeringa (2004; Chapter 

8), instead of the 15 locations used by Nerbonne (2010) and shown in Figure 1. The 

Norwegian data set contains phonetic transcriptions of 58 words of the fable “The North 

Wind and the Sun” (http://www.ling.hf.ntnu.no/nos) and is analyzed and explained in 

detail by Heeringa (2004; Chapter 8). In all data sets we mostly ignore diacritics and 

suprasegmentals and focus on the vowels and consonants in the pronunciations. As the 

transcription system in the American-English LAMSAS data set (included by Nerbonne 

2010) was highly complex and did not allow for straightforward removal of the 
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diacritics, we did not include this data set in the current study. Hence, the results will be 

based on five dialect data sets: Bantu, Bulgarian, German, Dutch and Norwegian.  

To illustrate our reduction method with respect to the “field worker isoglosses”, 

we use the same Dutch dataset as explained above, however now also including the 189 

locations in Flanders (Wieling et al. 2007).  

 

 

3. Methods 

 

In the following we will show how we calculate and calibrate the linguistic 

distances to make them more comparable across different data sets.  

 

3.1. Calculating linguistic distances 

 

The linguistic distance between two locations is based on calculating the 

Levenshtein distance (Levenshtein 1965) which measures the minimum number of 

insertions, deletions and substitutions to transform one string into the other. The 

following example shows that the Levenshtein distance of [b�nd�n] and [b�ind�], two 

Dutch dialectal pronunciations of binden, ‘to bind’, is 3.  

 

b�nd�n insert � 1 

b��nd�n subst. i/� 1 

b�ind�n delete n 1 

b�ind�   

  3 

 

This calculation corresponds with the following alignment: 

 

b  � n d � n 

b � i n d �  

 1 1    1 
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The total linguistic distance of two locations is calculated by averaging the 

Levenshtein distance of all string pairs (i.e. pronunciations) available. Note that in 

general we enforce a syllabicity constraint to make sure vowels only align with vowels 

and consonants only with consonants. Nerbonne and Heeringa (2009) review work on 

measuring language variety differences using inter alia the Levenshtein distance. 

 

3.2. Calibrating linguistic distances 

 

Dialect data sets commonly differ in the number of segments (i.e. each is 

representative of an individual sound) which are used to transcribe the pronunciations. 

The size of the segment inventory, or segment set, will certainly influence the linguistic 

distances. To see this, consider the example calculation above. Besides the original 

segment set which includes /�/ and /i/ assume there is a second segment set which does 

not distinguish these two sounds. It is obvious that the distance of the alignment above 

using the second set is reduced with respect to the distance assigned by the original set. 

In general, using fewer segments reduces the distinctions and will lower the linguistic 

distance. However, it is unclear how large the effect is, and if the effect is similar for 

every pair of places, regardless of their distance. To investigate the specific effect of the 

size of the segment inventory on distance measurements, we merge the segments of the 

inventory to obtain a smaller number of segments using two different transformation 

methods, one simple and one more sophisticated.  

 

3.2.1. Simple transformation 

 

The first transformation is extremely simple and consists of reducing each 

segment set to only two segments, one vowel and one consonant. All vowels reduce to a 

single vowel and all consonants reduce to a single consonant.  

 

3.2.2. Advanced transformation 

 

The second transformation is more sophisticated and aims to retain as much 

information as possible from the original dialect distances by reducing the number of 

segmental distinctions in each data set, but no further than necessary. Intuitively, we 
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reduce the segmental inventory iteratively, mimicking the work a field worker might do 

if she were told that the segmental inventory she had used was one element too large. 

Then she would need to consider which distinction is least important among all the 

distinction made in the data set. As the data set with the minimum number of 

distinctions is the Bantu data set, we reduce all other segment sets to its number of 

segments (i.e. 42). We could have attempted this manually, but as defining the most 

similar sounds is highly subjective, we developed an automatic method based on the 

Pointwise Mutual Information (PMI) procedure introduced to dialectometry by Wieling 

et al (2009) to identify the most similar sounds. PMI is a similarity measure for 

categorical data inspired by information theory (Church and Hanks 1990). The 

Pointwise Mutual Information procedure determines the distance between every 

segment pair by assessing the relative frequency of every segment pair and comparing 

this to the relative frequency of the individual segments (i.e. the expected frequency of 

the segment pair if they are statistically independent). The method consists of the 

following steps (applied to each dataset having more than the minimum number of 

segments, in our case 42): 

 

1. The Levenshtein algorithm with syllabicity constraint (see Section 3.1) is used 

to obtain the initial alignments; 

2. For every sound segment pair, we calculate the PMI score:  

PMI(x,y) = log2( p(x,y) / p(x)p(y) ) 

Where: 

• p(x,y): the number of times x and y occur at the same position in two aligned 

strings X and Y, divided by the total number of aligned segments (i.e. the relative 

occurrence of the aligned segments x and y in the whole dataset). Either x or y 

can be a gap, representing an insertion or a deletion. 

• p(x) and p(y): the number of times x (or y) occurs, divided by the total number of 

segment occurrences (i.e. the relative occurrence of x or y in the whole dataset). 

Dividing by p(x)p(y) normalizes the empirical frequency, p(x,y), with respect to 

the frequency expected if x and y are statistically independent. 

The greater the PMI score, the more segments tend to co-occur in 

correspondences. Negative values indicate that segments do not tend to co-occur in 

correspondences, while positive PMI values indicate the opposite. 
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In contrast to Wieling et al. (2009), we ignore identical sound segment pairs in 

calculating the PMI score, since this improved the quality of the alignments (evaluated 

against the same gold standard as used by Wieling et al., 2009). Intuitively this also 

makes sense, since we are only interested in the distances (based on the PMI scores) of 

non-identical sound segment pairs relative to each other as the distance of identical 

sound segment pairs is always set to 0.  

In order to assign a PMI score to a segment pair which does not occur (i.e. p(x,y) 

equals 0), we add a very small value to p(x,y), p(x) and p(y). This yields a very low PMI 

score for these segments, since the denominator is relatively high compared to the 

numerator. In addition, the effect on the PMI scores of segment pairs which do occur is 

negligible, since the original denominator and numerator values are relatively high 

compared to the small increase;  

3. We convert the PMI score to a distance by subtracting it from 0 and scaling 

these values between a value slightly larger than 0 (only identical segments have a 

distance of 0) and 1. Consequently, a high PMI score yields a low distance and vice 

versa; 

4. The Levenshtein algorithm based on the new segment distances is used to 

generate the new alignments. Thus instead of using a distance of 1 for an unequal 

segment pair (as used in the example alignment in Section 3.1), we use the calculated 

segment distance; 

5. Steps 2, 3 and 4 are repeated until the segment distances (and therefore the 

alignments) remain constant. 

 

After having determined the final segment pair distances, we identify the segment 

pair having the lowest distance and merge these two sounds (note that a gap is never 

merged with a sound). As long as the data set contains more sound segments than the 

desired number of segments (in our case 42), we run the Pointwise Mutual Information 

procedure anew on the simplified data set, to determine the next segment pair to be 

merged (i.e. the pair having the lowest distance). Note that since two merged segments 

are considered as a new individual segment, it is possible that this segment is involved 

in subsequent mergers, effectively merging more than two segments together.  

As an example, consider the following. We have two Dutch dialects, where in 

each dialect two words are pronounced. The Dutch word binden (to bind) is pronounced 
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as [b�nd�n] in dialect A and [b�ind�] in dialect B. The Dutch word heet (hot) is 

pronounced as [he�t] in dialect A and [heit] in dialect B.  

Initially the alignments are based on the Levenshtein algorithm with the 

syllabicity constraint. Because of this, [b�nd�n] and [b�ind�] align in two ways (both 

having a distance of 3): 

 

b  � n d � n 

b � i n d �  

 1 1    1 

 

b �  n d � n 

b � i n d �  

 1 1    1 

 

The words [he�t] and [heit] align in only one way (having a distance of 1): 

h e � t 

h e i t 

  1  

 

After the initial alignments are generated, the first run of the Pointwise Mutual 

Information procedure determines the distance between [�] and [�] and the distance 

between [i] and [�]. It is clear that [�] and [�] align only once and [i] and [�] align twice. 

Since the frequency of [i] (3) is less than twice the frequency of [�] (2), the increase of 

the numerator for [i] and [�] is not compensated by the increase of the denominator 

(relative to [�] and [�]) and hence the PMI score for [i] and [�] will be higher than the 

PMI score for [�] and [�].1 Consequently, the distance between [i] and [�] will be 

decreased, and in particular made lower than the distance between [�] and [�] so that in 

                                                 
1 Note that for the sake of clarity this explanation is somewhat simplified as in the actual algorithm each 
word (and not each alignment) is assigned the same importance. The general result, however, remains the 
same.  
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the second run of the PMI procedure the second alignment for binden will not be 

generated anymore (since the Levenshtein algorithm only yields the alignment with the 

minimum distance). After the second run, the PMI scores will not change anymore and 

the calculated segment distances are used to determine the segment pair which should 

be merged. In our example segments [i] and [�] will be merged, as there is no other 

segment pair involving non-identical segments present (the gap is never merged with a 

sound).  

Note that a slight change to this procedure is necessary when it is used to 

compensate for transcriber differences (e.g., as present in the Dutch dialect dataset). In 

that case not necessarily the two most similar segments are merged, but a segment used 

only by one group of transcribers (but not the other) is merged with the most similar 

sound used by both groups of transcribers. This process is repeated until all segments 

are used by both groups of transcribers. 

 

3.3. Obtaining the final linguistic distances 

 

After reducing the segment set, we determine the linguistic distances by applying 

the Levenshtein distance (with syllabicity constraint) to the adapted transcriptions as 

described earlier. Because different data sets do not necessarily use words with similar 

lengths, we normalize the Levenshtein distance between two strings by dividing it by 

the alignment length of the longest transcription (i.e. in the example alignment above, 

the distance would be 3/7 as there are 7 positions in the alignment). 

 

 

4. Results 

 

Figure 2 shows the relation between the geographical distance and the logarithm 

of the linguistic distance (hence the straight lines) (i) based on the original number of 

segments in every data set, (ii) based on the simple transformation (reduction to two 

segments) and (iii) based on the advanced transformation (reduction to 42 segments). 

All  slopes  were significant  (p < 0.001)  and  the association strength ranged between  

r = 0.13 (Norway, 2 segments) to 0.67 (The Netherlands, 42 segments). We can clearly 
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see in Figure 2 that reducing the number of segments decreases both the intercept and 

the slope.  

 
Figure 2. Influence of the segment reduction on the sublinear relationship between geographical distance 

“as the crow flies” and linguistic distance. Only the curve is shown, the individual data points are omitted 

for clarity. Note the logarithmic scale of the y-axis in all graphs.  
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To see the effect of the reduction on the original distances, the correlation 

coefficients between the distances measured using the original segment inventory and 

the distances measured using the reduced segment inventories are shown below. All 

correlations are significant (p < 0.001).  

 

 Correlation coefficient r with reduced data sets 

 42 segments 2 segments 

Bantu (42 segments) 1 0.85 

Bulgaria (67 segments) 0.98 0.74 

Germany (77 segments) 0.96 0.80 

Norway (58 segments) 0.995 0.77 

The Netherlands (82 segments) 0.97 0.77 

 

It is clear from the high correlations between the original distances and the 

distances based on 42 segments that most distinctions in the original data set are 

retained in the transformed data set. It is also clear that the reduction is effectively a 

linear transformation. 

However, when looking at the reduction to two segments, much more variation is 

lost. To illustrate this effect more precisely, Figure 3 shows a visualization of the 

similarity between Dutch dialects. Darker lines connect locations which are 

linguistically more similar. We clearly see the high similarity between the maps based 

on the original segment set (top-left) and the segment set consisting of 42 segments 

(middle). However, the map in the bottom-right (based on two segments) is less similar 

since it shows darker lines (larger distances) as well as increased contrasts (e.g., the 

diagonal dark line from the northwest to the southeast which divides the map effectively 

in a light top half and a dark bottom half is not so clear in the original map). We 

therefore judge the advanced transformation as the better option. 
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Figure 3. Similarity between Dutch dialects. Darker lines connect dialects which are more similar. The 

top-left map shows the distances based on the original segment set (82 segments), the middle map shows 

the distances based on the segment set consisting of 42 segments and the bottom-right map shows the 

distances based on two segments.  
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4.1. Segment mergers 

 

We manually verified that the advanced transformation mostly merges sound 

segments which are linguistically similar. To illustrate that the automatic segment 

reduction method indeed performs very well, the table below shows the segments which 

are merged for the German data set (the 32 segments which were not merged are 

omitted from the table). We can clearly see that the ten segment groups (containing 45 

segments) generally consist of similar sounds. For example, the fourth group shows the 

(sensible) merger of several fricatives in the alveolar and alveo-palatal region.  

 

/�/ /u/ /�/ /�/ 

/l/ /�/ /�/ /�/ 

/t/ /d/ /�/ 

/s/ /z/ /�/ /�/ /�/ /�/ 

/k/ /c/ /�/ /q/ /�/ / / 

/x/ /"/ 

/#/ /v/ /%/ /&/ /w/ /f/ /)/ /p/ /b/ 

/+/ /,/ /-/ /./ 

/h/ /// /0/ 

/1/ /r/ /3/ /4/ 

 

 

4.2. Reducing transcriber differences in the Dutch dataset 

 

Applying the reduction method to the Goeman-Taeldeman-Van Reenen-Project 

data gives us the opportunity to analyze the Dutch dialect distances in the complete 

area, instead of separately for the Netherlands and Flanders (Wieling et al. 2007). Figure 

4 visualizes the dialect areas based on the reduced segment set of 56 segments using 

multidimensional scaling (MDS; see Heeringa 2004:156). While the new dialect 

distances2 correlated highly (r = .99, p < 0.0001) with the original dialect distances, we 

are now more confident that the observed differences between the Dutch and Flanders 

                                                 
2 Note that, in contrast to the procedure described in Section 3.3, distances between pronunciations were 
not normalized and based on the PMI distance between the individual segments as this was found to be 
one of the best methods to assess dialect distances in a single dataset (Wieling et al. 2009).  
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dialects are not caused by transcriber differences due to different-sized segment sets. 

Apart from the observed similarities and differences already described by Wieling et al. 

(2007) in the individual countries, we see some differences between neighboring 

dialects in different countries. In the Limburg area (located in the southeast) dialects 

seem relatively similar, irrespective of the country in which they are located. More 

surprisingly, however, the western part of Flanders (with the greenish tint) appears to 

have some similarities with the northeastern part of the Netherlands (Low Saxon).  

 

 

Figure 4. MDS plot of Dutch dialect distances based on 56 segments. The legend shows the approximate 

pronunciations of the words moeten (‘must’) and twee (‘two’) in the areas corresponding to the colors. 

Note the similarity between the Low Saxon area (northeast of the Netherlands) and the area in the western 

part of Flanders. 
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5. Conclusions and Discussion 

 
In the previous sections we showed that the number of segments used for 

recording pronunciation data certainly has an effect on the pronunciation distances 

measured. With respect to the distribution of linguistic distance as a function of 

geographical distance, we see effects on both the intercept and the slope of the sublinear 

curve. It is therefore clear that when attempting to interpret the individual slopes, it is a 

sine qua non that the segment sets are reduced to a comparable size. We examined two 

segment-set transformations, one simple transformation which reduced all phonetic 

distinctions to just vowel versus consonant, and one more elaborate transformation 

which reduced segment inventories iteratively, by repeatedly selecting those two 

segments with the highest similarity as measured by the information-theoretical 

pointwise mutual information score.  

The simple transformation resulted in segment sets of the same size (i.e. 2 

segments) in which obviously a lot of variation got lost. The advanced transformation 

retained more of the variation of the original data set by removing fewer segmental 

distinctions. We concluded therefore that the advanced transformation is more suitable 

for the task of obtaining commensurable measurements of pronunciation difference on 

data sets which have been transcribed using segment inventories of different sizes.  

Two anonymous reviewers suggested a simpler transformation, normalizing so 

that xnorm = (x-min) / (max-min), for raw score x. In that transformation the sound 

segment set is not reduced, but every aggregate dialect distance in a data set is scaled 

between 0 and 1. While this is a sensible approach in some cases when one wishes to 

scale the linguistic distances, it is unsuitable for our purposes. As noted in the 

introduction, one area in which we wished to apply the correction was where we 

suspected “field-worker isoglosses”, but the application assumes a minimum and a 

maximum distance. In applying the correction one might use the minima and maxima of 

comparisons in the entire set of pairwise comparisons, or one might choose to restrict 

one’s attention to the comparisons between the sites collected by the suspect field 

worker on the one hand and the sites collected by the non-suspect one the other. In 

many cases there will not be enough material to be certain that the minimum and 

maximum are being chosen representatively. For example, in the set we examined, 

consisting of the Netherlands and Flanders, the set of initially incommensurable pairs of 
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sites are also the sites at the greatest distance from one another — for which one would 

also expect the greatest linguistic distances. The simple min-max scaling could never 

cope with this sort of situation. So we are skeptical about applying this technique. 

When we turn to scaling for the purpose of investigating a general model, the 

same problems arise, in addition to some others. One additional problem is that all 

languages areas would scale from zero to one, while we suspect that the left end of the 

geography may show interesting differences which we would interpret as different 

levels of subdialectal variation. A second problem becomes obvious when we consider 

specific cases, and in particular the slopes of the logarithmic curve which is to be 

explored further. In Figure 2, the relationship between linguistic and geographical 

distances for Norway is quite flat. Scaling the linguistic distances between 0 and 1 

would increase the slope enormously (since the geographical distances remain the 

same). In fact we suspect that we would normally obtain a slope 1/max.-geo.-dist., since 

linguistic distance normally rises monotonically with respect to geographic distance. 

This would not be a rewarding explicandum! 

It is clear that there may be further sources of bias in comparing pronunciation 

transcriptions of different languages. We have introduced a means of controlling for 

different sizes of segment inventories in this paper, but the segment inventories may 

also have radically different constitutions, as well. For example, while Germanic 

languages have complex vowel phoneme systems with twenty or so vowels and 

diphthongs (Roach 2000), Slavic languages may have as few as five vowels (i.e. /i/, /e/, 

/a/, /o/ and /u/). Slavic languages, however, have more complicated sets of consonants, 

distinguishing two variants of most consonants, one with and one without palatalization 

(Hamilton 1980: 18). We conjecture that using segment inventories of the same size but 

of different composition (in the sense just illustrated) need not skew measurements to 

the same extent as using segment inventories of different sizes does, but we concede 

that this point deserves attention as we proceed to compare dialect distances from 

different language areas. It may be worth noting that, if the composition of the segment 

inventories does indeed bias measurements, then the program which seeks to compare 

measurements across different languages will be faced with a very difficult problem, as 

most data collections represent phonemic distinction reliably, and phonemic inventory 

size is known to vary a good deal (Hay and Bauer 2007). 
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Once we are confident that we are in possession of a measure of pronunciation 

distance that yields commensurable scores across different languages, we are in a 

position to remove some “field-worker isoglosses”, as we demonstrate above. We are 

also in a position to address questions about the different factors influencing the 

distribution of varietal differences with respect to geography in different languages. 

These may concern population density, population mobility, the degree of social 

stratification, the length of time since language standardization, the length of time since 

the population has become demographically (or politically) stable, or perhaps other 

factors. In this paper we have attempted to lay the groundwork for investigation of such 

factors that can move beyond speculation, by providing a technique for obtaining 

commensurable measurements across data sets from different languages. 

We have not examined the measurement of geographical distances in this paper, 

but it is also clear that this topic deserves careful consideration as we do not imagine 

that distance directly influences the tendency of language varieties to differ, but rather, 

indirectly, in reducing the likelihood of social contact. We have measured geographical 

distance very simply to-date, using the “as-the crow-flies” great circle distance on the 

earth’s surface, with no attention to specific aspects of geography. It is clear that the 

great circle distance is not optimal as it disregards natural barriers limiting individuals 

in their mobility (Handley et al. 2007). A possible improvement in this area would be to 

use travel distances or travel duration (automatically) calculated using a travel planner 

(but this may have limited effectiveness; see Gooskens 2005), or alternatively use 

friction matrices indicating how difficult it is to travel from one location to the next 

(Handley et al. 2007).  
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